Ylem documentation
  • 🗒️General information
    • Introduction to Ylem
    • Quick start guide
    • Release notes
  • 🔬Open-source edition
    • Installation
    • Usage of Apache Kafka
    • Task processing architecture
    • Configuring integrations with .env variables
  • 💡Integrations
    • Connecting an integration
    • Library of integrations
      • Amazon Redshift
      • Apache Kafka
      • APIs
      • Atlassian Jira
      • AWS Lambda
      • AWS RDS
      • AWS S3
      • ClickHouse
      • ElasticSearch
      • E-mail
      • Google Big Query
      • Google Cloud SQL
      • Google Pub/Sub
      • Google Sheets
      • Immuta
      • Incident.io
      • Jenkins
      • Hubspot
      • Microsoft Azure SQL
      • MySQL
      • OpenAI ChatGPT
      • Opsgenie
      • PostgreSQL
      • PlanetScale
      • RabbitMQ
      • Salesforce
      • Slack
      • Snowflake
      • Tableau
      • Twilio. SMS
      • WhatsApp (through Twilio)
    • Initial demo data source
  • 🚡Pipelines
    • Pipeline management
    • Tasks
      • Aggregator
      • API Call
      • Code
      • Condition
      • External trigger
      • Filter
      • For each
      • GPT
      • Merge
      • Notification
      • Query
      • Pipeline runner
      • Processor
      • Transformer
    • Running and scheduling pipelines
    • Library of templates
    • Environment variables
    • Mathematical functions and operations
    • Formatting of messages
  • 📈Statistics and profiling
    • Statistics of runs
    • Slow tasks
  • 📊Metrics
    • Metric management
    • Using previous values of a metric
  • 💼Use cases, patterns, templates, examples
    • Use cases
    • Messaging patterns
      • Datatype Channel
      • Message Dispatcher
      • Messaging Bridge
      • Message Bus
      • Message Filter
      • Message Router
      • Point-to-Point Channel
      • Publish-Subscribe Channel
      • Pull-Push
    • Functional use cases
      • Streaming from Apache Kafka and messaging queues
      • Streaming from APIs
      • Streaming from databases
      • Data orchestration, transformation and processing
      • Usage of Python and Pandas
      • KPI Monitoring
      • OKRs and custom metrics
      • Data Issues & Incidents
      • Reporting
      • Other functional use cases
    • Industry-specific use cases
      • Finance and Payments
      • E-commerce & Logistics
      • Customer Success
      • Security, Risk, and Anti-Fraud
      • Anti-Money Laundering (AML)
  • 🔌API
    • OAuth clients
    • API Reference
  • 👁️‍🗨️Other resources
    • FAQ
    • Our blog on Medium
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Metrics

Using previous values of a metric

PreviousMetric managementNextUse cases

Last updated 1 year ago

Was this helpful?

One of the most exciting features metrics provide you is the opportunity to compare the current value of the metric with some values of it within a certain period:

  • Metric average

  • Metric quantile

  • Metric median

Examples:

These functions only use the values of this metric from the moment it was created and first run. For example, if you created and scheduled this metric on February 25th and want to calculate an average value, it won't consider the values before that date.

More information about these functions can be found on .

📊
Mathematical functions
Metric average value
Metric quantile